Programming an ATtiny w/ Arduino 1.0

This tutorial shows you how to program an ATtiny45, ATtiny85, ATtiny44 or ATtiny84
microcontroller using the Arduino software. These are small, cheap microcontrollers that are
convenient for running simple programs. The ATtiny45 and ATtiny85 have eight legs and are
almost identical, except that the ATtiny85 has twice the memory of the ATtiny45 and can
therefore hold more complex programs. The ATtiny44 and ATtiny84 have 14-legs and more
inputs and outputs.

ATtiny45/85 vs. an Arduino Board

The ATtiny45 or 85 is a great option for running simple Arduino programs: it's small, cheap and
relatively easy to use. It does, however, have some limitations relative to the ATmega328P on
an Arduino Uno. There are fewer pins, meaning you can’t connect as many components.
There’s less flash memory (4KB or 8KB instead of 32KB), meaning your programs can’t be as
big. There’s less RAM (256 or 512 bytes instead of 2KB), meaning you can’t store as much
data. And there’s no hardware serial port or 12C port (Wire library), making communication
trickier. (There are workarounds, like the SoftwareSerial library or the TinyWire library, but
they’re not as robust and flexible.)

In short, then, if your project requires only a few simple inputs and/or outputs, you're probably
fine using an ATtiny. If you're trying to hook up more components or do more complex
communication or data processing, though, you’re probably better off with something like the
ATmega328P on an Arduino Uno. If you want something smaller and cheaper than a full
Arduino board, you might try using an ATmega328P on a breadboard instead.

Materials and Tools
For this tutorial, you'll need:
e Anin-system programmer (ISP), a Arduino Uno or Duemilanove (w/ an ATmega328, not an
older board with an ATmega168).
o ATtiny45 or ATtiny85 (8-pin DIP package) or an ATtiny44 or ATtiny84.
e a solderless breadboard and jumper wires.

Download

e ATtiny master.zip (hosted by GitHub)

Installing ATtiny support in Arduino

e If you haven't already, download the Arduino software, version 1.0.4 (1.0.3 and 1.0.1
should work too, but not 1.0.2). Install the Arduino software, following the instructions for
Windowsor for Mac OS X.

o Download the ATiny master.zip file from the link above.

o Unzip the attiny master.zip file. It should contain an “attiny-master” folder that contains an
“attiny” folder.

e Locate your Arduino sketchbook folder (you can find its location in the preferences dialog in
the Arduino software)

e Create a new sub-folder called “hardware” in the sketchbook folder, if it doesn’t exist
already.

o Copy the “attiny” folder (not the attiny-master folder) from the unzipped ATtiny master.zip to
the “hardware” folder. You should end up with folder structure like Documents > Arduino
> hardware > attiny that contains the file boards.txt and another folder calledvariants.

¢ Restart the Arduino development environment.

e You should see ATtiny entries in the Tools > Board menu.

Sketch WG Help

Auto Format =T
Archive Sketch

Fix Encoding & Reload
Serial Monitor {+3#M

ATtiny45 (internal 1 MHz clock)

. Serial Port 3 ATtiny45 (internal 8 MHz clock)
T ATtiny45 (external 20 MHz clock)

Programmer > ATtiny85 (internal 1 MHz clock)

i Burn Bootloader ATtiny85 (internal 8 MHz clock)

,}:r.' |

ATtiny85 (external 20 MHz clock)
#¢# Pir 13 has an LED connected on nost { ATtiny44 (internal 1 MHz clock)
A ATtiny44 (internal 8 MHz clock)

' ATtiny44 (external 20 MHz clock)
A ke setup. routine runs once when: wou ATtinyrg.q {internal 1 MHz clock)

wviold setup v :
& 1|'-i*-;in|:il%iie the digitol pin gz on of ATtm?Bd {mternal 8 MHz C|D€k}
piftodedled, OUTPUTY; ATtiny84 (external 20 MHz clock)
5 Arduino Uno
Arduino Duemilanove w/ ATmega328

A4 the loop routine runs aver and over §
wimi A L mee ENOT Arduinn Nierimila ar Nuamilanave wi ATmeana AR

Connecting the ATtiny

You'll need to provide power to the ATtiny and connect it to your programmer. That is,
connecting MISO, MOSI, SCK, RESET, VCC, and GND of the programmer to the
corresponding pins on the ATtiny. (Or, if you're using an circuit w/ an ATtiny, simply connect the
programmer to the ISP header on the board — you may also need to power the board
separately.)

- o Ew W EwE Eww
LA B L
- R R R R R e w o R R R
L B O R B
- W R R O W W E R R R W E
R W R W W R R R W
LR B R R BB
L R
LN D T
L R B R B

L B L

sewee srwew
connecting an Arduino (as ISP) to an ATtiny.

Programming the ATtiny

Next, we can use the Arduino as an ISP to upload a program to the ATtiny:

e Open the Blink sketch from the examples menu.

e Change the pin numbers from 13 to 0.

o Select the appropriate item from the Tools > Board menu (leave the serial port set to that of
your Arduino board).

o Select the appropriate item from the Tools > Programmer menu (e.g. “Arduino as ISP” if
you’re using an Arduino board as the programmer, USBtinyISP for the USBtinylSP,
FabISP, or TinyProgrammer, etc).

e Upload the sketch.

You'll probably get the following message, but don’t worry, the upload should have worked
anyway:

e avrdude: please define PAGEL and BS2 signals in the configuration file
for part ATtiny85

e avrdude: please define PAGEL and BS2 signals in the configuration file
for part ATtiny85

Now connect an LED between pin 0 and ground, you should see it blink on and off. Note that
you may need to disconnect the LED before uploading a new program.

Configuring the ATtiny to run at 8 MHz (for SoftwareSerial support)

By default, the ATtiny’s run at 1 MHz (the setting used by the unmodified “ATtiny45", etc. board
menu items). You need to do an extra step to configure the microcontroller to run at 8 MHz —
necessary for use of the SoftwareSerial library. Once you have the microcontroller connected,
select the appropriate item from the Boards menu (e.g. “ATtiny45 (8 MHZz)”). Then, run the “Burn
Bootloader” command from the Tools menu. This configures the fuse bits of the microcontroller
so it runs at 8 MHz. Note that the fuse bits keep their value until you explicitly change them, so
you’ll only need to do this step once for each microcontroller. (Note this doesn’t actually burn a
bootloader onto the board; you’ll still need to upload new programs using an external
programmer.)

ATtiny Microcontroller Pin-Outs

ATtiny45 / ATtinyB85

S
Reset []1 80 VCC (+)
(Analog Input3) Pin 3 [} 2 71! Pin 2 (Analog Input 1, SCK)
{Analog Input2) Pin4 [} 3 6] Pin 1 (PWM, MISO)
() GND []4 51 Pin 0 (PWM, AREF, MOSI)
ATtiny44 / ATtiny84
: = o
(+} veC []1 14 |1 GND (-)
Pin10 [}2 13 |1 Pin 0 (Analog Input 0, AREF)
Pin2 []3 12 L] Pin 1 (Analog Input 1)
Reset [4 11 L Pin 2 {Analog Input 2)
(PWM) Pin8 [|5 10 [Pin 3 {Analog Input 3)
{PWM, Analog Input 7) Pin 7] 6 9 |1 Pin 4 {(Analog Input 4, SCK)
(MOSI, PWM, Analog Input 8) Piné [| 7 B [Pin 5 (Analog Input 5, PWM, MISO)

Reference
The following Arduino commands should be supported:

pinMode()
digitalWrite()
digitalRead()
analogRead()
analogWrite()
shiftOut()

pulseln()

millis()

micros()

delay()
delayMicroseconds()
SoftwareSerial (has been updated in Arduino 1.0)

Alternative: ATmega328P on a Breadboard

If the ATtiny isn’t quite powerful enough but you still want to use a bare microcontroller instead
of a full Arduino board, see this tutorial on using an ATmega328P on a breadboard. It allows
you to use all the same functions and libraries as the Arduino Uno, but with just a
microcontroller and a few small components.

1. We don’t need 10mfd capacitor. | have successfully tested both in original
Uno and custom Uno board. If it doesn’t work in original Uno then only add
the 10mfd capacitor.

2. For ATtiny4313 extract upgraded avr from avr-upgraded.zip and replace
<Arduino Folder>/hardware/tools/avr with. Restart Arduino IDE

Rahul Kundu

